Topics in the November 2014 Exam Paper for CHEM1612

Click on the links for resources on each topic.

2014-N-2:

- Acids and Bases
- Complexes
- Chemical Equilibrium
- Chemical Kinetics
- Introduction to Chemical Energetics

2014-N-3:

- Introduction to Chemical Energetics
- Acids and Bases

2014-N-4:

- Solutions
- Introduction to Chemical Energetics

2014-N-5:

• Introduction to Chemical Energetics

2014-N-6:

• Introduction to Chemical Energetics

2014-N-7:

Acids and Bases

2014-N-8:

• Acids and Bases

2014-N-9:

Chemical Equilibrium

2014-N-10:

- Radiochemistry
- Complexes

2014-N-11:

- Solubility
- Complexes

2014-N-12:

- Introduction to Colloids and Surface Chemistry
- Redox Reactions and Introduction to Electrochemistry

2014-N-13:

• Redox Reactions and Introduction to Electrochemistry

2014-N-14:

Chemical Kinetics

Confidential

CHEM1612 Chemistry B (Pharmacy)

Final Examination Semester 2, 2014

Time Allowed: Three hours + 10 minutes reading time

This examination paper consists of 24 pages

INSTRUCTIONS TO CANDIDATES

- 1. This is a closed book exam.
- 2. A simple calculator (programmable versions and PDA's not allowed) may be taken into the exam room.

Make	Model

- 3. The total score for this paper is 100. The possible score per page is shown in the adjacent table.
- The paper comprises 30 multiple choice questions and 13 pages of short answer questions. ANSWER ALL QUESTIONS.
- 5. Follow the instructions on page 2 to record your answers to the multiple choice questions. Use a dark lead pencil so that you can erase errors made on the computer sheet.
- 6. Answer all short answer questions in the spaces provided on this question paper. Credit may not be given where there is insufficient evidence of the working required to obtain the solution.
- 7. Take care to write legibly. Write your final answers in ink, not pencil.
- 8. Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.

	Marks			
Page(s)	Max	Gain	Gained	
2 10	-30			MCQ
11	6			
12	7			
13	4			
14	3			
15	3			
16	7			
17	2			
18	4			
19	8			
20	7			
21	7			
22	8			
23	4			
Total	100			
Check	Total			

• Explain the following terms or concepts.		Marks 3	
Lewis base			
Le Châtelier's principle		_	
Le Chatener's principle			
Heterogeneous catalysis		_	
		_	
• A bar of hot iron with a mass of 1.000 kg and a temperature of 100.00 °C is plunged into an insulated tank of water. The mass of water was 2.000 kg and its initial temperature was 25.00 °C. What will the temperature of the resulting system be when it has reached equilibrium? The specific heat capacities of water and iron are 4.184 J g^{-1} K ⁻¹ and 0.4498 J g^{-1} K ⁻¹ , respectively.			
	Answer:	-	

•	A mass of 1.250 g of benzoic acid, $C_7H_6O_2$, underwent combustion in a bomb calorimeter. The heat of combustion of benzoic acid is -3226 kJ mol ⁻¹ . What is the change in internal energy during this reaction?	Marks 4
	Answer:	-
	If the heat capacity of the calorimeter is 10.134 kJ K^{-1} , calculate the temperature change that should have occurred in the apparatus.	
	Answer:	-
•	Phenylketonuria is an inherited disorder in which phenylacetic acid, $C_6H_5CH_2COOH$, (simplified here to HPAc) accumulates in the blood. A study of the acid shows that the pH of a 0.12 M HPAc solution is 2.60. What is the p K_a of phenylacetic acid?	3
		-
	Answer:	

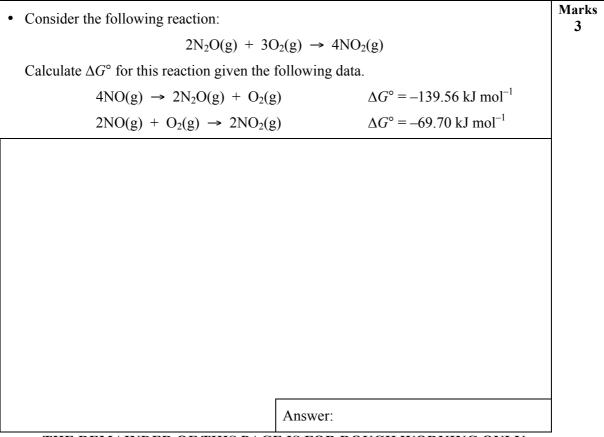
• The freezing point of a sample of seawater is measured as -2.15 °C at 1 atm pressure Assuming that the concentrations of other solutes are negligible, determine the molality (in mol kg ⁻¹) of NaCl in this sample. The molal freezing point depression constant for H ₂ O is 1.86 °C kg mol ⁻¹ .		

Answer:

• What is the value of the enthalpy change for the following reaction?

$$MgO(s) + CO_2(g) \rightarrow MgCO_3(s)$$

Data:CompoundMgO(s) $CO_2(g)$ MgCO_3(s) $\Delta_f H^\circ / \text{kJ mol}^{-1}$ -602-394-1096


Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

1

 Consider the following reaction and associated thermochemical data? 2NO₂(g) É N₂O₄(g) 							
Data:	Data: Compound $NO_2(g)$ $N_2O_4(g)$						
Dutu.	$\Delta_{\rm f} H^{\circ} / \rm kJ \ mol^{-1}$	33	9				
	$S^{\circ} / J K^{-1} mol^{-1}$	240	304				
	pression for the equilibration and ΔS°						
$\Delta H^{\circ} =$		$\Delta S^{\circ} =$			_		
What is the val	ue of ΔG° for the read	ction at 298 K	.?		_		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• A sample of hydrofluoric acid (0.10 M, 2 pK _a of hydrofluoric acid, HF, is 3.17. Ca	5.0 mL) is titrated with 0.10 M NaOH. The lculate the pH at the following four points.	Marks 7
before any NaOH is added		
	pH =	
when half of the HF has been neutralised	I	-
	Γ	-
	pH =	
at the equivalence point		
	pH =	
after the addition of 37.5 mL of NaOH		
	pH =	1

THIS QUESTION CONTINUES ON THE NEXT PAGE.

 Sketch the titration curve.
 Marks 2

 Image: Sketch the titration curve.
 1

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

• At 700 °C, hydrogen and iodine react according to the following equation.	Marks 4
$H_2(g) + I_2(g) \acute{E} 2HI(g) K_c = 49.0$	
If 0.250 mol of HI(g) is introduced into a 2.00 L flask at 700 °C, what will be the concentration of $I_2(g)$ at equilibrium?	
Answer:	
Hydrogen also reacts with sulfur at 700 °C:	
$2H_2(g) + S_2(g) \acute{E} 2H_2S(g) \qquad K_c = 1.075 \times 10^8$	
Determine K_c for the following overall equilibrium reaction at 700 °C.	
$2I_2(g) + 2H_2S(g) - E = S_2(g) + 4HI(g)$	
Answer:	

Write balanced nuclear equations for the following changes.					Ma	
Electron	capture by ³⁷ Ar					
Positron	emission by ⁹³ Ru					
Beta par	ticle emission by 42 K					
Alpha pa	article emission by ²⁵¹ Cf					
Give the	oxidation number of the ir	ndicated a	om in the	following	g compounds.	
	Compound	Atom		idation umber		
	HNO ₂	N				
	NI ₃	N				
	[Co(NH ₃) ₅ Cl]SO ₄	Co				
	K ₃ [CrCl ₆]	Cr				
Write do	own the formulas for the for	llowing co	mpounds.			
	Compound			Form	ula	
hexa	aaquacobalt(II) carbonate					
tetra	aamminecopper(II) sulfate					
amn	nonium hexafluoridoferrate	e(III)				
pota	assium hexacyanidomangar	nate(II)				

	Answer:
alculate the solubility of AgB	Br in 2.0 M $Na_2S_2O_3$.
	Answer:
he K_{stab} for $[\text{Ag}(\text{S}_2\text{O}_3)_2]^{3-}$ is n hy this is so.	nuch greater than the K_{stab} for $[\text{Ag}(\text{NH}_3)_2]^+$. Explain

• Draw sketches of a detergent micelle, a lipid vesicle and a water-in-oil microemulsion.				
	_			
	_			
• In the electrolytic production of Al, what mass of Al can be deposited in 2.00 hours by a current of 1.8 A?	2			
Answer:				
• What products would you expect at the anode and the cathode on electrolysis of a 1 M aqueous solution of NiI ₂ ? Explain your answers.	2			

2218(a)

• An electrochemical cell is consists of 1.0 L half-cells of Fe/Fe ²⁺ and Cd/Cd ²⁺ with the following initial concentrations: $[Fe^{2+}] = 0.800 \text{ M}$, $[Cd^{2+}] = 0.200 \text{ M}$.		
	-	
Answer:		
1?		
	-	
Answer:		
V?		
	_	
Answer:		
of both ions?		
	-	
$[Fe^{2^+}] =$	-	
1	0.800 M, [Cd ²⁺] = 0.200 M. Answer: ? Answer: V? Answer: of both ions?	

• At a certain temperature the following data were collected for the reaction shown.					wn. Marks
$2ICl + H_2 \rightarrow I_2 + 2HCl$					
Exp	periment	Initial [IC1] (mol L ⁻¹)	Initial [H ₂] (mol L^{-1})	Rate of formation of $[I_2]$ (mol $L^{-1} s^{-1}$)	
	1	0.10	0.10	0.0015	
	2	0.20	0.10	0.0030	
	3	0.10	0.050	0.00075	
Deter	rmine the 1	rate law for the reac	tion.		
Wha	t is the val	ue of the rate consta	nt?		
			Answer		
T	HE DEM	AINDER OF THI		R ROUGH WORKING O	

THIS PAGE IS FOR ROUGH WORKING ONLY.

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors	
1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \text{ W} = 1 \text{ J s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Decimal fractions		Deci	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10 ⁻⁶	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р	10 ¹²	tera	Т

Standard Reduction Potentials, E°		
Reaction	E° / V	
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82	
$\operatorname{Ce}^{4+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72	
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51	
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50	
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36	
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23	(+0.82 at pH = 7)
$Pt^{2+}(aq) + 2e^- \rightarrow Pt(s)$	+1.18	
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96	
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96	
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92	
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80	
$Fe^{3+}(aq) + e^- \rightarrow Fe^{2+}(aq)$	+0.77	
$I_2(aq) + 2e^- \rightarrow 2I^-(aq)$	+0.62	
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53	
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34	
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32	
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15	
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by d	efinition)
$\operatorname{Fe}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Fe}(s)$	-0.04	
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13	
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14	
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24	
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40	
$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.44	
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74	
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76	
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83	(-0.41 at pH = 7)
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89	
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68	
$\operatorname{Sc}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Sc}(s)$	-2.09	
$Mg^{2+}(aq) + 2e^- \rightarrow Mg(s)$	-2.36	
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71	
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87	
$Li^+(aq) + e^- \rightarrow Li(s)$	-3.04	

Useful	formulas

Thermodynamics & Equilibrium	Electrochemistry
$\Delta U = q + w = q - p\Delta V$	$\Delta G^{\circ} = -nFE^{\circ}$
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	Moles of $e^- = It/F$
$\Delta G = \Delta G^{\circ} + RT \ln Q$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta G^{\circ} = -RT \ln K$	$= E^{\circ} - (RT/nF) \times \ln Q$
$\Delta_{\rm univ}S^\circ = R \ln K$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$\ln \frac{K_2}{K_1} = \frac{-\Delta H^\circ}{R} \left(\frac{1}{T_1} - \frac{1}{T_1}\right)$	$= (RT/nF) \times \ln K$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_w = pH + pOH = 14.00$	PV = nRT
$pK_w = pK_a + pK_b = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{\frac{1}{2}} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Mathematics	Quantum Chemistry
$16 = \sqrt{b^2 - 4ac}$	$E = h\nu = hc/\lambda$
If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	$\lambda = h/mv$
$\ln x = 2.303 \log x$	$E = -Z^2 E_{\rm R}(1/n^2)$
Area of circle = πr^2	$\Delta x \cdot \Delta(mv) \ge h/4\pi$
Surface area of sphere = $4\pi r^2$	$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$
Volume of sphere = $\frac{4}{3} \pi r^3$	$T\lambda = 2.898 \times 10^6 \text{ K nm}$
Miscellaneous	Colligative Properties & Solutions
$A = -\log \frac{I}{I_0}$	$\Pi = cRT$
	$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$
$A = \varepsilon c l$	c = kp
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	$\Delta T_{\rm f} = K_{\rm f} m$
$\int \frac{1}{2\pi \varepsilon_0 r} \frac{1}{4\pi \varepsilon_0 r} r^{VA}$	$\Delta T_{\rm b} = K_{\rm b} m$

ACTINOIDS	LANTHANOIDS	1 ну повосем Н 1.008 1.008 1.008 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.	1
s лстичим Ас [227.0]		4 векуплич Ве 9.012 12 масякани Mg 24.31 20 салстич Са 40.08 38 87.62 56 въкним Ва 137.34 88 88 88 88	2
		21 sc.v.dutivi Sc 44.96 39 VTRAUNI X 88.91 57-71 57-71	ယ
90 THORIUM Th 232.04		22 ттгамем 104 котнековним 104 261	4
91 protactinium Pa [231.0]	59 лаборумим Рг 140.91	23 VANADIUM V 50.94 41 SIOBIUM V 50.94 41 SIOBIUM V 50.94 41 Nb 92.91 73 ГАКТАЦИМ Та 180.95 5 105 Db	IJ
92 икалим U 238.03	60 NEODYMIUM Nd 144.24	24 спеомим Сг 52.00 42 моглавежим Мо 95.94 74 гичества 8 8 8 8 8 8 8 8	6
93 ^{Neptunium} Np [237.0]	61 ркометиним Рт [144.9]	25 малесалезе Мп 54.94 16.2 107 воляетия Re 186.2 107 воляетия Bh [262]	7
94 Рытомим Ри [239.1]	62 ^{SAMARIUM} Sm 150.4	26 101.07 101.07 108 108 108 108 108 108 108 108	×
95 Аменсічм Ат [243.1]	63 ^{Елкорим} Е ц 151.96	1 1 1 1 1 1 1 1 1 1	9
96 сивим Ст [247.1]		28 NI 58.69 28 106.4 106.4 106.4 110 110 110 110 110 110 1271]	10
97 BERKELLIUM B K 1] [247.1]		29 COPPER Cu 63.55 47 SUVER Ag 107.87 79 Colu 107.87 79 Colu 111 196.97 Rg 29 29 29 29 29 111 1 1 1 1 1 1	11
		30 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.59 200.50 200.5	12
98 98 Cf [252.1]		5 10.81 10.81 10.81 10.81 10.81 10.81 11.82 69.72 49 Inn.LICM 114.82 204.37	13
99 EINSTEINIUM ES [252.1]	67 ногмим Но 164.93	6 савоо Савоо С С С С С С С С С С С С С С С С С С	14
100 Fermium Fm [257.1]	68 еквим Е г 167.26	7 NTROGEN N 14.01 15 NUOSPHORES PHOSPHORES NUOSPHORES N	15
101 MENDELEVIUM Md [256.1]	69 тнилим Тт	8 0 0 0 0 0 0 0 16 0 16 5 3 2.07 3 3 3 3 3 4 5 5 2 7 8.96 5 2 7 8.96 127.60 121.00 121	16
102 Nobelium No [259.1]	70 уттеквим УВ 173.04	9 FLIGORINE F 19,00 17 CIL 35,45 35 BBC 79,90 79,90 79,90 126,90 At 210,0]	17
103 LAWRENCIUM LT [260.1]	71 Lutetium Lu 174.97	2 Internation 10 Net 4.003 10 Net 20.18 18 Ares 39.95 36 Reverson 54 Net 7.54 Net 7.54 Net 7.54 Net 7.54 Net 7.54 Net 7.55 Net 7.	18

PERIODIC TABLE OF THE ELEMENTS

(d)1810000